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The influence of vibrations on the readings of a horizontal gyrocompass 
with two rotors is investigated. The inertia forces of the elements of 

the compass and the elastic properties of the gyroscopes* membranes are 
being taken into account. The formulas obtained permit the calculation 
of the most dangerous (resonance) vibration frequencies and the amount 
of turning of the compass through an azimuth angle as a function of the 
frequency. 

Fig. 1. Fig. 2, 

The influence of vibrations is expressed through the external periodic 
moments MC* and MT* in the horizontal plane, about the eastern and the 
northern axes of the instrument, respectively. These and other moments 
can be transmitted to the gyroscopes’ rotors only through the deforma- 
tions of the membranes. The axis of symmetry of a rotor r and the axis of 
symmetry of its casing R, usually coinciding. diverge when the membrane 
is deformed. The moment of the elastic forces acting on a rotor is ex- 
pressed by the formula 

M=pr XR 

Here r and B are unit vectors, p is the transverse rigidity of a 
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membrane. 

The mean orientation of the vibrating elements of the compass, that 
is, of its two rotors and of the shell, is determined by three unit 
vectors: 

‘,,I, the unit vector of the axis of symmetry of the first rotor; 

ro2, the unit vector of the axis of symmetry of the second rotor; 

ro3, the unit vector of the axis of the shell, which is parallel to 
the rotation axes of the casings (the so-called axes of precession). 

An orientation at an arbitrary deflection is determined by unit vectors 

rl, r3, r3, respectively, and by an angle $ which is the rotation angle 
of the shell about r3. At an arbitrary deflection of the shell and of the 
rotors, the axes of the casings remain perpendicular to the axis of pre- 
cession r3. The axes of the casings will turn about r3 relative to the 
shell through angles x which equal each other because of the sectorial 
constraint. The orientation of the axes of the casings after this turn- 
ing will be determined by the unit vectors RI and R2. 

The vectors Rl and R3 are uniquely determined through the vectors rl, 

rz’ r3 and the angle t,k 

In deriving the equations of motion, we shall use the coordinate 
system shown in Figs. 1 and 2, where (rol, ro2) is the equatorial plane. 
Let +I and ~$3 be angular deviations of rl and r2 from their mean posi- 
tion in the equatorial plane; let ZI and ~3 be the deviations of r1 and 
r2 above the equatorial plane; let x and y be the projections of the 
deviated vector r3 on ro2 and rol. Let $ be the rotation angle of the 
shell about r3. The orientation of the vector r3 determined through x 
and y can also be determined through the coordinates 5, r), or x0, y” , 
which is explained in Fig. 2. 

The. equations of motion representing the law of the rate of change of 
the angular momentum for each of the three bodies, that is, for the two 
rotors and for the shell, have the form 

Hi, + A& = M*1, Ic=M,+M,* 

Hi, + A& = M,,, Iii = - M, - ME* (2) 

Hi, - Ai, = MP,, 1;i, = MJ, 

Hi2 - Ai2 = M,, 

Here H is the angular momentum of a rotor about its rotation axis, A 
is the moment of inertia of a rotor about the axis of precession, I is 
the moment of inertia of the shell. The right-hand terms in the equations 
represent the projections on the respective axes of the elastic moments 
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generated by the membranes. The moments Me* and M,,*. as mentioned pre- 
viously, are the only exterior moments connected with vibrations of the 
foundat ion. 

When deriving (2) we neglected the rigidity of the spring constraint 
and of the pendular properties of the instruments, since they correspond 
to rigidities considerably smaller than ,LL. The ellipsoid of inertia of 

the shell is assumed to be a sphere and the gyroscopic effects of the 
shell are neglected. In the formulas for the elastic moments, which will 
follow, the inertia of the casings is also neglected. 

The elastic moments of the membranes Ml and M2 acting on the first 
and on the second rotor, respectively, are, on the strength of (I), given 

by 

Ml = P (rl x 111), M? = p (r2 x R,) (3) 

Since 

MI. @Z x rd = IL (rl . RI) h rd. Ma . (r3 x r2) = TV (rz e Rz) (ra . rs) 

therefore, with sufficient accuracy 

MI = CL (rl. RI) h r3) b x rd t pr3 . (n x RI) rl 

M2 = p (ra. Rp) (r.‘. rs) (rS x ri) + pr3. (rr x R,) r3 

In our coordinate system 

rl. r3 = 21 + Y, r3.(rlxRl)=$---x---(PI 
rz. r3 = zz + 2, r3. (rz x Rz) = 9 + x - ‘p2 

w 

The condition of equilibrium for the casings, neglecting inertia, re- 
quires HI . r3 = M2 - r3; hence 

Since the deformation is small we can set 

R1.rl=l, Rf, r2 = 1 (3) 

On the strength of (5) and taking into account (6), (71, and (81, we 

have 

Ml = P (21 + Y) (rl x r3) + p ($ - v)r3 

MS = p (ZZ f 2) (r. x r3) -1- p t I+ - 'p1+'p2 

7b3 

Writing down the scalar components along the respective axes of the 
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vector equations (9) and neglecting terms of the third order of small- 
I-leX3.S. we obtain 

The elastic moment acting on the shell will be denoted by Me. It is 
clear that 

ill* = -k’l, - R&. 

Writing down the scalar components along the respective axes of the 
above vector equation and neglecting terms of the second order of small- 
ness, we obtain 

J!f, = u (Zl + y + 25‘2 + 2) GOS F, 
Y 

From Fig. 2 we have 

z = n cos e + E sin 8, E’ =- 7~ sin e + E COS E 

y=qcost:--sine, $ z q ain E -- f Co8 8 

It follows that 

(12) 

x-i- y 
xo;_ ______ 

2 
tan E + ‘+Y cot a 

(13) 
x+Y y” =z - 

2 tan e-7 cot 8 

The relations (13) permit all the quantities appeering in Formulas 
(2), (IO) and (11) to be expressed in terms of the coordinates +l, &, 

21’ 22, 2, y, 116. The linear part of the system (2) takes the form 

FI& - & = p (21 + y) 

. . ,. 
2-Y 

‘WC [Pa 

' 2 sin t: = p sin e (21 + y - 22 - r) + I%*,, i+=2p(T- 44 (IA) 

** 
,jl’+y 

2 cos E = -~ I_1 cos E (z1 + Y + zz + 2) - M; 
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The nonlinear parts of the moments (10) (they will be denoted by 
6M 6M 6M 

4,’ 4,’ 21’ 
6Mz2) may have constant components hM+, , hhtm,, A Mzl, 

AM 
x2 ’ 

which are equivalent to the external moments hMC. “MT7 hMZ and 

to the moment hN resisting the spring moment N(e). Thus 

A&J? = - cos E (An/l,, + AM&, AM, = AM,, + AIW,~ 
($5) 

AiM, = -- sin F, (Aill,, - Aib’J, AN = AM,, - Aiklz2 

The most important resisting moment is AMZ. Taking into account (13) 
we obtain for MZ the following expression: 

6&f, = $z (sin2 8 (z + y) (zl-F y - zz - z) + cos2 E (x - y) (zl+ y + zz+ z)) (16) 

In order to investigate the system (14) we introduce the variables 

al = Ip, Bl = 1: + y, 71=3:-y 

By suitable additions and subtractions the equations in 
transformed into the separable system 

(14) can be 

H. A.. . . 
a=2cil---ct 

I_ iI -t 2cil - a = 0 

Eliminating 6 and using matrix notation we have 

- 2 sin2 e 
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2 COG E -+ $ D2 2 cos2 e 0 0 

I (I__+ -fD 0 

0 ;D l+$Dz -2 

0 0 -1 2+-+ 

2COSEiM rr -- 
tL i 

(1 

0 

I! 

(20) 

When the moments Me* and M,,* are sinusoidal with the frequency o, then 
the solution of (19) and (20) yields 

A 
yl=$2sin~M,,*, p1 = - 2 2 cos E M,* 

+r= >12sineM,*, %* 
(21) 

fi = - a 2 cos e MC* 
2 

Here A are the corresponding minors and determinants when D = io. 
Substituting (17) and (21) into (16). we obtain the expression 

6M, = - 
2ME*MBT 

pAlA 
{cos 2eAg, Ay, + cos2 e ADA,, + sin2 E ABAy) (22) 

If 

MC* = M sin6 sin at M,,* = M cose sin (ot $ 6) 

then hHZ reaches a maximum when 8 = l/4 R, @ = 0, and 

(x3) 

M * = max AM, = - 
MS 

2 - {cos 2~ AR, Au, 
~/.&AZ 

+ cosz~ApAy, + sin2EAplAy) (24) 

Calculations give 

A1 = 2 sin2 e - h (1 j- sx (1 -j- 2x sin2 E)} + sxZh2 

Au, = (1 + m) - z&h, Au = m 2 sin2 E (25) 

Aa = 4 co@ E - h (2 (1 + COG e) + 5 [ 1 - 2x (1 + co52 E) + 4x2 cosv e]) + 
+ k2 { 1 + 2.W [1 + x (1 + COG e)]} - .s+hS (26) 

ApI = 2 + s (1 + 2x) - h{l + 2s~ (1 + x)} + SXW 

AB = s (1 + 2x) - mJ. 

Here 

IP A IO” 
s=H2, x=--, 

I 
a =- (27) 

P 

The roots of the equation 
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AI (a) AZ (a) = 0 

give the resonance frequencies. By Formulas (24) to (28) we can calculate 
both the resonance frequencies and the quantity MZ* at any vibration 
frequency 0. 

Equation (28) has five roots. The elasticity of the membranes deter- 
mines, in principle, the three smaller roots; the two larger roots are 
connected with higher-order terms of the polynomials A,(X) and A,(X). 
The latter two roots can be very roughly approximated by the formula 

and they correspond to the frequency 

H 
04.6 = yi 

which is the nutation frequency. Nutation frequencies are, as a rule, 
quite high, therefore, when the low frequency spectrum of vibrations is 
being investigated, the higher-order terms of the polynomials Al(X) and 
h,(x) can obviously be neglected. It should be mentioned, though, that 
the presence of the high-order terms in Formulas (25) and (26) does not 
cause any special difficulties. 

When the elasticity of the sectorial constraints of the casings is 
taken into account, then the relations (9) will change a little and 
assume the form 

Denoting the rigidity of the elastic constraint of the bisector of 
the axes of the casings and of the northern axis of the shell by ~1, we 
have 

Formula (24) for the resistance H * and the formulas in (25) remain 
valid, but the relations ia (26) musi be replaced by 

AZ = 4 cosze - h (2 (1 f K cos2 E) + s [ 1 -t 2x (1 + cosa E) + 4x2 cos2 e]} $ 

+ hZ (K + sx [(l + 2x) + K (1 + 2x cos2 e)]} - Ksx2h3 (31) 

A,;, = 2 + s (1 + 2x) - 1, {K + sx (1 + K + 2x)) + Ksx2h2 

A8 = (1 + 2x) - Kxh 
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When K = 1, which corresponds to I-(~ = 00, then the relations (31) re- 

duce, as they should, to (26). 

To conclude, we present a numerical example. Let the parameters of a 

gyrocompass have the following values: 

H = 10’ g cm set; I = 500 g cm sec2; A = 30 g cm sec2; 

/J = 6 x lo6 g cm; Pi = 4500 g cm 

The angle between the axes of the rotors c = 60’ ; the amplitudinal 

acceleration of the vibrations IO = 0.1 g; the latitude (p = 60’. 

2” 

D 10 20 h Hz 

Fig. 3. 

These parameters correspond to 

M = Plw/g = 450 g cm 

From (27) we have 

s z 0.3 ?t = 0.06, Ax 02 
1.2.104 

From Formulas (25) and (26) we find 

Al = 1.5-1.02 h + 0.0012 X2 
A_= 1.018 - 0.0012 h 

A_,- 0.027 

AZ = l-2.85 3, + 1.04 h2 - 0.0011 h 

AD,= 2.336 - I.041 -f 0.0011 h* 

Ab= 0.336 --- 0.018 h 

When the values of X are not too large, then we derive from (24) quite 

an accurate formula for MZ* 
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Iv,* = 0.087 MA 2.1 - h 
p (1.47 - h) (0.35 - h + 0.37h2) 

The moment M Z* causes the gyrocompass to turn through the azimuth 
angle Aa 

Aa = 
IV,* MZ* 

2H ccs ELI cos cp 
=p 

3.68 cm 

The above formulas permit to express the magnitude of the azimuth 
angle 1 ha 1 as a function of the frequency of vibrations f. This depend- 
ence is shown in Fig. 3. The resonance frequencies correspond to the 
roots 

hl = 0.430, 1Le = 1.470, h, = 2.416 

and the frequencies in cycles per second equal 

51 = 11.4, 12 = 20.6. is.= 26.2 

Translated by T.L. 


