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The influence of vibrations on the readings of a horizontal gyrocompass
with two rotors is investigated. The inertia forces of the elements of
the compass and the elastic properties of the gyroscopes’ membranes are
being taken into account. The formulas obtained permif the calculation
of the most dangerous (resonance) vibration frequencies and the amount
of turning of the compass through an azimuth angle as a function of the
frequency.
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Fig. 1. Fig. 2.

The influence of vibrations is expressed through the external periodic
moments Mf‘ and M * in the horizontal plane, about the eastern and the
northern axes of the instrument, respectively. These and other moments
can be transmitted to the gyroscopes’ rotors only through the deforma-
tions of the membranes. The axis of symmetry of a rotor r and the axis of
symmetry of its casing R, usually coinciding, diverge when the membrane
is deformed. The moment of the elastic forces acting on a rotor is ex-
pressed by the formula

M=pr xR

Here r and R are unit vectors, p is the transverse rigidity of a
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membrane.

The mean orientation of the vibrating elements of the compass, that
is, of its two rotors and of the shell, is determined by three unit
vectors:

LIS the unit vector of the axis of symmetry of the first rotor;
Togs the unit vector of the axis of symmetry of the second rotor;

T3, the unit vector of the axis of the shell, which is parallel to
the rotation axes of the casings (the so-called axes of precession).

An orientation at an arbitrary deflection is determined by unit vectors

ry, ry, r;, respectively, and by an angle t which is the rotation angle

of the shell about ry. At an arbitrary deflection of the shell and of the
rotors, the axes of the casings remain perpendicular to the axis of pre-
cession r,. The axes of the casings will turn about r; relative to the
shell through angles y which equal each other because of the sectorial
constraint, The orientation of the axes of the casings after this turn-
ing will be determined by the unit vectors R, and R,.

The vectors R, and R, are uniquely determined through the vectors ry
ry, r; and the angle .

In deriving the equations of motion, we shall use the coordinate
system shown in Pigs. 1 and 2, where (r01' Too) is the equatorial plane.
Let ¢, and ¢, be angular deviations of r; and r, from their mean posi-
tion in the equatorial plane; let zy and z, be the deviations of r; and
r, above the equatorial plane; let x and y be the projections of the
deviated vector r, on roo a0d ry;. Let Yy be the rotation angle of the
shell about r;. The orientation of the vector r; determined through »
and y can also be determined through the coordinates £, n, or x°, y°,
which is explained in Fig. 2.

The,  equations of motion representing the law of the rate of change of
the angular momentum for each of the three bodies, that is, for the two
rotors and for the shell, have the form

Hz, + Ap; = M, I8 = M, + M*
HZ.2 +A¢2 = 1Mz,, Iﬁ = — My — M:* (2)
Hgy— Az = M, b= DM,
Iﬁiz“‘-Aéé=: Al%
Here H is the angular momentum of a rotor about its rotation axis, 4
is the moment of inertia of a rotor about the axis of precession, I is

the moment of inertia of the shell. The right-hand terms in the equations
represent the projections on the respective axes of the elastic moments
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generated by the membranes. The moments Mf‘ and M_*, as mentioned pre-
viously, are the only exterior moments connected with vibrations of the
foundation.

When deriving (2) we neglected the rigidity of the spring constraint
and of the pendular properties of the instruments, since they correspond
to rigidities considerably smaller than pu. The ellipsoid of inertia of
the shell is assumed to be a sphere and the gyroscopic effects of the
shell are neglected. In the formulas for the elastic moments, which will
follow, the inertia of the casings is also neglected.

The elastic moments of the membranes M, and M, acting on the first
and on the second rotor, respectively, are, on the strength of (1), given
by

M; =p (r; x Ry, M, =p (r: X Ry) (3)
Since
M;-(rs X 11) = P (r1- Ry) (rg - 13), Mz (rs X r2) = (r2+ Ro) (r2 - rg) (4)
therefore, with sufficient accuracy

My=p(ri-Ry)(rp-r5) (x3x rp) +urs- (rp x Ry) g

(5
My = (ry - Ro) (13 15) (k3 X 12) -+ g - (12 % Ro) 1y )
In our coordinate system
rn-r3=2n-+y, rge (P X Ry) = —x — @1 .
(8)

rp-r3 =2, 4z, -t xRe) =9+ x— @
The condition of equilibrium for the casings, neglecting inertia, re-
quires M, . rz; =M, ry hence

1
=—2—(q>z—q)1) (7)
Since the deformation is small we can set
R1~l'1:1, R-z'l‘gzl (8)

On the strength of (5) and taking into account (6), (7), and (8), we
have

3

Mlzu(zl—{—y)(rlxr;,)-}—p(\p_ﬂ;;&)r

\ 9)
— ———q)l —; P2 ) rs

My = it (22 + 2) (ro x 7o) -

Writing down the scalar components along the respective axes of the
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vector equations (9) and neglecting terms of the third order of small-

ness, we obtain

P2 )
—v)

¥ v)

My =p (a1 + 9+ oo (BT

\ [

ll%: w iz + x) — y”p(%
{10}

My =up (¥ ~¥ > %) + 2% (21 + y)
.*_ P
W, = (0 — Py (o + o)

The elastic moment acting on the shell will be denoted by My. It is

clear that
My = —M; — M.

Writing down the scalar components along the respective axes of the
above vector equation and neglecting terms of the second order of small-

ness, we obtain
M; =p(n+y + 29+ 7)cos &

=p(z1+y~zz-~m)sina {11}

ay = o (BT )

From Fig., 2 we have
x = ncos ¢ -+ £sin g, 2% == vsine -+ Leose (12)

y=mncoseg—Esineg, y =meine—Lcose

It follows that

., Ty ‘Ow_mv"»y z—Y

$= 5Tme- 2= tan & + —5 " cot ¢ 3
r—y o ETHY Ty

q:m, =7 tan ¢ 5 cot &

The relations (13) permit all the quantities appearing in Formulas
(2), (10) and (11) to be expressed in terms of the coordinates ¢, ¢,,
zy, 2z, %, ¥, Y. The linear part of the system (2) takes the form

. v 4 - . .
Hot+ Ay —p (p—B5H) Hp—Afi=p (o +9)

Hig b AGy = b (q; _ 91_;5_4’_2\) . Hoy— Anyp=(z2+ 2)

z—y . . (0l c .
Ixﬁ%::psins(zi-{—y—zzwx)%-z’%ﬂ, 1\{3:2}1( 5 ‘1’) {14}
1x+y::wpcoss(z1—}—y+ zZ—}—x)-wME

2cos ¢



Horizontal gyrocompass on vibrating elastic foundation 1401

The nonlinear parts of the moments (10) (they will be denoted by

8M¢ R 3M¢ , OM_, OM_) may have constant components Aqu . AM¢ , AM_,
1 2 51 ] 1 2 21
A”zz' which are equivalent to the external moments AMg, AM,”, AMz and

to the moment AN resisting the spring moment N(e). Thus
AM2 = — C0S € (AM% -+ AM%),

AM, = AM, + AM,

(15)
AN = AM, — MM

AM, = —sine (AM% — AM%),

The most important resisting moment is AM:' Taking into account (13)
we obtain for Mz the following expression:

w
oM, = n%e

(sin® e (@ + v) (z1+ y — 22 — ) + cos? & (x — y) (z1+ y + z21+ 2)} (16)

In order to investigate the system (14) we introduce the variables

a=@1+ @2, B=12+ ze

T = 21 — 22,

=1 — ¢
a1 = P, ==+ y,

(t7)
n==z—y

By suitable additions and subtractions the equations in (14) can be
transformed into the separable system

I .. . 2 .
m 71+ 2 sin? g7 — 2 sin? ey = Iy sine M,
H A4 . . "
po—wr=r-m  Ir+45=0
! -9 cos? 2 2 *
m By 2cos?ep; -} 2cos?ef = — wcose My (18)
H . A .. H ., A
e —p B=gta

—H—B+—H— o= 203 — &

I .
E‘ ay 420 —a =10
Eliminating 6 and using matrix notation we have

i I
12 sin? g+ — D?

} Il i :
— 92sin%e ! }‘Tl "1 2sin M, }!
mooa S 9
—1 Lt — L S|l y ‘ 0 ]
pt p
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2 coste -+ kA D? 2coste 0 0 B1 __2cose M._*
W w =
{ 1 +_/,1_D-z _[_I 0 B 0
w " - (20)
0 é,—D 1—1~i4—Dz —2 o 0
W w
0 0 —1 2-{—4 D2 oy 0 i
W |

When the moments Hf‘ and M _* are sinusoidal with the frequency w, then
the solution of (19) and (20) yields

A, . Ag
Y1 =~ 2sin e M_*, f1= — 2 2cose M.*
A1 b Az ) @1
=&25insM* ﬁ:—l}ﬁ’Z(;oseM*
T Ay n’ A,y g
Here A are the corresponding minors and determinants when D = i w.
Substituting (17) and (21) into (16), we obtain the expression
2M *M _*
3 n. ;
oM, = ——m(cos 2ehg A, + cos e AgA, + sin?e AgAy (22)
If
Mg* = M sin 6 sin ot Mﬂ* = M cos0 sin (ot + 9) (23)

then AMz reaches a maximum when 8 = 1/4 7, & = 0, and

2

M
Mz*zmax AMZ”—_-——M

{cos 2eAg A, + cosleAgA, + sin?edg A (24)

Calculations give

Ay = 2sin? e — A {1 4 sx (1 4 2% sin? &)} + sx?A2

A, =+ %) —sh, A, =sx2sin?e (25)
A2 = 4cos?e —A{2 (14 cos?e)+ s [l —2x (14 cos?e) + 4x?cos? e]} +
+ A2 {1+ 2w [1 -+ % (1 + cos? e)]} — su2Ad (26)

ABI:2+s(1+2u)—?v{1—i—2s%(1—{—x))—{—m“l‘
AB‘—‘s(i—}-Zu)——s%X
Here

£ _4 p =10 @7
H?’ I ©w

s =

The roots of the equation
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At (M) As (M) =0 (28)

give the resonance frequencies. By Formulas (24) to (28) we can calculate
both the resonance frequencies and the quantity Mz‘ at any vibration
frequency w.

Equation (28) has five roots. The elasticity of the membranes deter-
mines, in principle, the three smaller roots; the two larger roots are
connected with higher-order terms of the polynomials Alch) and Az(A).
The latter two roots can be very roughly approximated by the formula

7»4zk5«z1/sx

and they correspond to the frequency

H
O = A
which is the nutation frequency., Nutation frequencies are, as a riule,
quite high, therefore, when the low frequency spectrum of vibrations is
being investigated, the higher-order terms of the polynomials AH(A) and
AQ(A) can obviously be neglected. It should be mentioned, though, that
the presence of the high-order terms in Formulas (25) and (26) does not
cause any special difficulties.

When the elasticity of the sectorial constraints of the casings is
taken into account, then the relations (9) will change a little and
assume the form

Mi=np(z+ ) T1Xra+ﬂo<‘l’*%ﬁ)ﬁ
M, =p (22 + x) rs X 1‘3+P-0<‘l’_(p—1—;—(p2)1'3 (29)

Denoting the rigidity of the elastic constraint of the bisector of
the axes of the casings and of the northern axis of the shell by p,, we
have

1 2u
o= O %:K:i-i——ﬁll—- (30)
[T

Formula (24) for the resistance Mz‘ and the formulas in (25) remain
valid, but the relations in (26) must be replaced by

Ay = 4cos?e — A {2 (1 + K cos? &) + s [1 + 2% (1 + cos? &) + 4n? cos® e]} +

4+ A {K + s [(1 + 2%) + K (1 + 2% cos? g)]} — Ksu?A® (31)
As,=2+3(1+2%)—7v(K+s%(1+K+2x))+Ksn“‘7~’

Ay = (14 2%) — Kxh
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When K = 1, which corresponds to py = o then the relations (31) re-
duce, as they should, to (26).

To conclude, we present a numerical example. Let the parameters of a
gyrocompass have the following values:

2 2

H=10% g cm sec; I = 500 g cm sec“; A= 30 g cm sec”;
p=6x 106 g cm; Pl = 4500 g cm

The angle between the axes of the rotors e = 60° ; the amplitudinal
acceleration of the vibrations » = 0.1 g; the latitude ¢ = 60°.

f i 1
\

L \

0 10 20 A Hz

Fig., 3.

These parameters correspond to
M= Plw/g = 450 g cm

From (27) we have

s=03 x=006 H— 2

From Formulas (25) and (26) we find

A; = 1.5—1.02 X+ 0.0011 2.2
A, = 1.018 — 0.0011

Y1

A= 0.027

A = 1-—-2.85 L+ 1.04 A2 — 0.0011 A
Ay = 2.336 — 1.04% + 0.0011 A2

Ag= 0.336 —- 0.018 %

When the values of A are not too large, then we derive from (24) quite

an accurate formula for Mz*



Horizontal gyrocompass on vibrating elastic foundation 1405

M2 24 —X
* — -
j”z 0.087 p (147 — A) (0.35 — A+ 0.3742)

The moment Mz‘ causes the gyrocompass to turn through the azimuth
angle Aa
g M ¥ M
T 2HcoseUcosg ~ 3.6g cm

The above formulas permit to express the magnitude of the azimuth
angle | Aa| as a function of the frequency of vibrations f. This depend-
ence is shown in Fig. 3. The resonance frequencies correspond to the
roots

A1 = 0.430, he = 1.470, )\3 = 2,416
and the frequencies in cycles per second equal

fl = 114, f‘z - 206. fs~: 262

Translated by T.L.



